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ABSTRACT 

A third civil frequency at 1176.45 Mhz. will be added 

to the GPS system. This new frequency will bring a 

number of benefits. The aviation user will be one of 

the prime beneficiaries because the new frequency is 

in a protected aviation band. Thus, the system will be 

more robust against interference and jamming. 

The carrier-phase differential user will also be 

a prime beneficiary as long as his application has a 

reasonably short baseline. It is this high accuracy use 

which is explored in some depth. The process of 

forming linear combinations of both the code and 

carrier-phase measurements is studied and the 

benefits and problems explained. 

INTRODUCTION 

As part of the modernization of GPS, a new 

signal will be made available to the civilian 

community.  This signal will have a frequency of 

1176.45 MHz. This new signal is sometimes 

designated as the L5 signal, but will be identified as 

the Lc signal within this paper. In addition, the 

modulation of the L2 signal at 1227.60 MHz will be 

changed to include a C/A code identical to the C/A 

code on the L1 signal at 1575.42 MHz. While 

existing receivers can access the L2 signal they do so 

by employing proprietary techniques which suffer 

considerable degradation in signal-to-noise. The 

modification will allow easy access to the L2 signal 

without this signal-to-noise penalty. 

The addition of a new frequency and an upgrade 

to the second frequency were motivated by a number 

of factors. One of the primary factors was the need to 

provide a measurement of the ionospheric refraction 

to the aeronautical users. Providing redundancy of 

signals to overcome intentional or unintentional 

signal interference or jamming was a second 

important factor. Because the ionospheric refraction 

is inversely proportional to the square of the 

frequency, it can be removed if measurements are 

available on at least two frequencies. While 

expensive receivers are available which use the 

current L1 and L2 signals to remove the ionospheric 

refraction effects, they are not considered adequate 

for aviation use for several reasons. First, and most 

significant, the L2 band is not a protected band for 

aviation use. In addition, with the current modulation 

on the L2 signal and the significant signal-to-noise 

degradation encountered by the unauthorized civilian 

user, even a small amount of interference is sufficient 

to make the signal unavailable, particularly at low 

elevation angles. The modification of the code 

modulation on the second frequency will increase 

significantly the availability of the second frequency. 

However, for the aviation community a protected 

band is still a necessity because of safety-of-life 

considerations. The Lc frequency meets this 

requirement. 

A third frequency for GPS was championed also 

by the surveying and precise navigation user 

community. A third civil frequency could make it 

much easier to resolve the whole-cycle ambiguities—

which is required to enable the centimeter-level 

accuracy available from carrier-phase differential 

GPS. There was some conflict in the particular choice 

of a third civil frequency.  Some wanted a frequency 



relatively close to either the existing L1 or L2 

frequencies so that differencing the new frequency 

with the nearby frequency would lead to a 

wavelength of several meters and allow single-epoch 

resolution of the ambiguities over distances short 

enough to ignore differential ionospheric refraction 

effects. Others [Enge & Hatch (1998), Erickson 

(1999), Hatch (1996)] wanted a frequency separated 

significantly from the existing L1 and L2 

frequencies. Such a scheme would allow the 

resolution of the whole-cycle ambiguities for both the 

existing (L1-L2) difference frequency (wide-lane) 

and for a second difference frequency formed from 

Lc and either L1 or L2. These two different 

ambiguity-resolved wide-lane measurements would 

have ionospheric refraction effects sufficiently 

different as to allow for a refraction correction 

without unduly amplifying the noise. The ability to 

remove ionospheric refraction effects would allow 

the baseline separation distance between reference 

receiver and user receiver to be extended to 

continental distances. Ambiguity resolution is 

currently limited to 10 to 20 kilometer separation 

distances, a limit inside of which refraction effects 

can be ignored. Unfortunately, no available 

frequency could be identified which was significantly 

removed (approx. 300 MHz.) from L1 and L2 and 

which also met the requirements of a secure aviation 

frequency band. Thus, those desiring a nearby 

frequency were winners by default. 

FUNDAMENTALS 

As indicated above the benefits of three 

frequencies arise from two considerations. First, 

multiple frequencies provide redundancy in the event 

of either intentional or unintentional electromagnetic 

interference or jamming. This is quite significant, 

particularly to the aviation user. Second, multiple 

frequencies can be of significant benefit in quickly 

resolving the whole-cycle ambiguities of the carrier-

phase measurements. These whole-cycle ambiguities 

must be resolved before the very high accuracy of 

carrier-phase differential GPS can be realized. The 

process of resolving the whole-cycle ambiguities is 

much easier when one can form “wide-lane” 

differences (beat frequencies) with lower effective 

frequency and hence longer wavelength whole-cycle 

ambiguities. It is this latter aspect which we wish to 

consider in detail in this paper. 

Complicating the process of ambiguity 

resolution are several error sources which must be 

considered in some detail. These include ionospheric 

and tropospheric refraction as well as multipath 

(signal reflection) and receiver tracking noise. 

Table 1 lists the most significant signal and 

signal-combination characteristics which are of 

interest. The first column specifies the signal or 

signal combination. The second column gives the 

associated frequency and the third column gives the

SIGNAL FREQUENCY 

        MHz. 

WAVELENGTH 

         meters 

IONOSPHERIC ERROR  
RELATIVE TO 

        L1           L1/L2 Diff.     
        L1 Carrier     1575.42          0.1903     1.0   1.5457 
        L2 Carrier     1227.60          0.2442     1.6469   2.5457 
        Lc Carrier     1176.45          0.2548     1.7932   2.7718 
L1 – Lc Difference       398.97          0.7514    -1.3391  -2.1501 
L1 – L2 Difference       347.82          0.8619    -1.2833  -1.9836 
L2 – Lc Difference         51.15          5.8610    -1.7185  -2.6563 
(L1 + L2) Sum     2803.02          0.1070     1.2833   1.9836 



TABLE 1 :  Characteristics of Carrier-Phase Signals and Principal Combinations 

associated wavelength. The last two columns give the 

relative magnitude of the ionospheric refraction 

encountered by the signals; first relative to the 

amount suffered by the L1 carrier signal and then 

relative to the difference in ionospheric refraction 

between the L1 and L2 signals. 

If the code measurements, P1, P2 and Pc are 

scaled into the units of the corresponding carrier-

phase wavelengths a table virtually identical to Table 

1 can be constructed for the code measurements and 

their principal combinations. (Without the scaling the 

frequency-weighted differences and frequency-

weighted averages must be formed to get equivalent 

ionospheric dependence.) However, the sign of the 

ionospheric refraction error is of opposite sign to that 

of the carrier-phase measurements.  

Of course, the code measurements differ from 

the carrier-phase measurements in a number of 

important ways. First, as indicated above, the 

ionospheric refraction effects are of opposite sign. 

Second, the code measurements are typically about 

two-orders of magnitude noisier than the carrier-

phase measurements. Depending on receiver design 

the tracking-loop noise in the carrier-phase 

measurements will usually be less than one 

millimeter.  

The principal and very significant advantage of 

the code measurements is that no whole-cycle 

ambiguities need be determined.  

Multipath effects are also about two orders of 

magnitude larger on the code measurements than on 

the carrier-phase measurements and generally 

dominate the fundamental receiver tracking noise. 

When multipath effects are present, the carrier-phase 

noise in double-differenced measurements will 

generally be between three and ten millimeters one 

sigma. New receiver designs with carrier-phase 

multipath mitigation may reduce this noise by a 

factor of three. Further, the multipath induced errors 

have time correlations, typically in the multiple 

minutes, and, hence, require significant averaging 

time for any substantial averaging benefit to accrue. 

These errors are also significantly larger at the low 

elevation angles. 

TWO-FREQUENCY BACKGROUND 

Before discussing the benefits of using three-

frequencies further, it is worth reviewing the situation 

with the existing L1 and L2 frequencies. Two 

principal techniques have been developed to resolve 

the whole-cycle carrier-phase ambiguities. The first 

technique referred to as the “Geometry-Free” or 

“Measurement-Space” technique uses smoothed code 

measurements to determine the whole-cycle 

ambiguities of the carrier-phase measurements. The 

second technique referred to as the “Geometry-

Dependent” or “Position-Space” technique uses a 

search process to determine which combination of 

whole-cycle ambiguities give the “best” solution 

according to some criteria, typically a minimum sum 

square of the residuals. 

Resolving the whole-cycle ambiguities using 

the geometry-free technique is accomplished by 

determining the difference between the code 

measurement and the carrier-phase measurement.  

This difference is used to determine (generally by 

simple rounding) the whole-cycle ambiguity of the 

carrier-phase measurement. Because of the much 

larger (multipath colored) noise in the code 

measurements the determination of the whole-cycle 

offset requires that either the code or the code/carrier 

difference be smoothed over multiple epochs [Hatch 

(1982)]. A similar, but generally shorter, smoothing 



of the code measurements is needed for the 

geometry-dependent approach, not to determine the 

whole-cycle ambiguity directly, but to provide a 

decreased uncertainty in the initial code position so 

that the subsequent ambiguity-search process can be 

more tightly constrained.  

Tropospheric refraction effects cause both the 

code and the carrier-phase measurements to be 

increased in value. The error induced in the 

measurements is much larger at the low elevation 

angles than at the high elevation angles. Fortunately, 

a large percent of the error can be removed by 

modeling. But significant error can still remain. This 

error affects the geometry-dependent technique of 

whole-cycle ambiguity resolution because it causes 

the measurement residuals to grow as the residual 

differential tropospheric error increases.  By contrast, 

because the code and carrier-phase measurements are 

affected equally by the troposphere, the geometry-

free method of whole-cycle ambiguity resolution 

remains unaffected. This is a significant advantage 

for the geometry-free approach. 

A second advantage for the geometry-free 

approach is that the ambiguity resolution can be done 

on a satellite by satellite basis. However, the 

geometry-dependent approach needs at least five 

satellites visible, else a position fix with residuals 

cannot be computed and one has no measure of the 

goodness of the solution. 

For the moving user, a third advantage accrues 

to the geometry-free approach. Because the code and 

carrier are both affected equally by movement, that 

movement has no effect on the code/carrier 

difference, which is used to determine the whole-

cycle ambiguity. However, depending on the 

implementation strategy, the geometry-dependent 

approach may need to propagate the position forward 

in time when the user is moving. 

The geometry-dependent approach does seem to 

have one advantage over the geometry-free approach.  

Specifically, the geometry-dependent approach has 

fewer degrees-of-freedom, i.e. only four independent 

whole-cycle ambiguity values are needed to obtain a 

position solution [Hatch (1990)]. By contrast, the 

geometry-free approach requires that the whole-cycle 

ambiguity be determined independently for each 

satellite. However, rather than a negative, this 

characteristic of the geometry-free approach can be 

used to advantage in the ambiguity verification 

process. 

It is generally highly desirable that the whole-

cycle ambiguity values be verified in some manner. 

This verification process is needed to insure against 

an incorrect value, which could result in a 

significantly biased position. The verification process 

in the geometry-dependent approach generally 

consists of finding the two sets of whole-cycle 

ambiguity values which result respectively in the two 

smallest values of root-sum-square (rss) of residuals. 

Only when the ratio of these two smallest values of 

rss residuals exceed a selected threshold is the set 

with the smallest rss residuals chosen as the correct 

set. Thus, the verification process for the geometry-

dependent technique can cause the time required to 

obtain a verified set of ambiguities to increase 

significantly. By contrast, the geometry-free 

approach will generally take longer to obtain a 

complete set of whole-cycle ambiguity values. But 

because the ambiguity values are individually 

independent, they can be used immediately to 

compute a position and will generally not result in a 

position with small rss residuals unless all of the 

values are correct. Thus, because of the greater 



degrees-of-freedom, the verification process for the 

geometry-free technique is much simpler.  

The advantages seem to favor the geometry-free 

approach and, as we shall see, this is even more the 

case when three frequencies are available.  

CASCADED WHOLE-CYCLE 

AMBIGUITY RESOLUTION 
The geometry-free technique of whole-cycle 

ambiguity resolution with two frequencies was 

described briefly above. Over short distances (less 

than 10 to 20 kilometers) the ionospheric refraction 

error at the reference station receiver is strongly 

correlated with the error at the user receiver. Thus, 

the error is essentially removed when the differential 

corrections are applied (or when the measurement 

differencing across receivers is done). This allows 

one to use the geometry-free technique to resolve the 

longest whole-cycle ambiguities and then to use the 

results to step successively to the smaller 

wavelengths. [Forsell et al. (1997), Volath et al. 

(1998)]  

The First Step 

Obviously, the whole-cycle ambiguities should be 

easiest to resolve when the wavelength is the longest. 

Thus the (L2-Lc) carrier-phase measurement should 

be easiest to resolve, since it has a wavelength of 

5.86 meters. In fact, any of the code measurements 

should be accurate enough to determine the 5.86 

whole-cycle ambiguity over short distances. 

However, the frequency-weighted average of the P2 

and the Pc code measurements is specifically 

recommended for two reasons. First, an average of 

the code measurements is more accurate than either 

measurement alone when both measurements have 

approximately the same noise statistics. (There are 

indications that the code measurement, Pc, may be 

significantly more accurate because of the new signal 

structure and additional signal power. In which case 

the Pc code measurement can be used over 

considerable distances.) Second the frequency-

weighted average of the two code measurements has 

an ionospheric refraction induced error which is 

exactly the same as the error induced in the carrier-

phase measurement differences over the same two 

frequencies. Thus, even though the short distance 

case where the ionospheric errors cancel is of the 

most interest, it is desirable, all else being equal, to 

cover the long distance case as well. The 

recommended equation for solving the 5.86 meter 

whole cycle ambiguity is then: 
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where we have used P  to denote the code 

measurements and L  to denote the carrier-phase 

measurements—both are assumed to have been 

corrected using the reference receiver measurements 

and, hence, to have noise proportional to single 

differences. Note that the 5.86 whole cycle ambiguity 

is just the difference of the L2 and Lc whole cycle 

ambiguities. Implementation of this equation should 

allow the resolution of the whole-cycle ambiguity in 

a single epoch for both short and long separation 

distances between the reference and user receivers. 

The Second Step 

The ambiguity-resolved whole-cycle (L2-Lc) 

measurement, scaled into meters, will be about 35 

times noisier, because of amplifying effects, than the 

L2 and Lc single difference measurements scaled into 

meters. This maps into a noise level of 7 to 25 

centimeters one sigma for most receivers. Receivers 

with the noise level near the lower end of this range 

can now use this measurement to resolve the 

ambiguities of the next shorter wavelength, i.e. the 86 

centimeter (L1-L2) measurement in a single epoch. 



Receivers with the higher noise level should use a 

multiple-second average of equation (1) before 

rounding and stepping to the 86 cm. wavelength 

measurement. Jung (1999) gives equations which 

relate the probability of successful ambiguity 

resolution to the standard deviation of the noise and 

the amount of round-off present when the computed 

value of the whole-cycle is converted to an integer. 

He also shows graphs of the code noise as a function 

of averaging time. Because of the colored nature of 

the multipath noise, the reduction does not decrease 

as the inverse square root of the number of epochs for 

either code or carrier-phase measurements. 

With modern multipath-mitigation receivers the 

frequency-weighted average of the L1 and L2 code 

measurements approaches the accruacy of the 

ambiguity-resolved (L2–Lc) measurement. Further, it 

has the added advantage that the ionospheric error is 

exactly matched to the (L1–L2) carrier-phase 

measurement. Thus, it is valid to use it over very long 

separation distances and for long smoothing intervals. 

However, as noted in Table 1, the scaling of the 

ionospheric refraction error is a not a lot different for 

the (L2–Lc) measurement and the (L1–L2) 

measurement. This means one can step from the one 

to the other over substantial separation distances and 

the equation below can be smoothed (averaged) for 

several hundred seconds before any significant bias 

would arise from differential ionospheric effects. The 

equation to step from the (L2–Lc) measurement to 

the (L1–L2) measurement is: 

)()( 21
86.0

86.5
86.5286.0 LLNLLN c −−+−=

λ
λ

    (2) 

The alternative equation to use while the third 

frequency is still unavailable or to use for very long 

distances and/or for long averaging intervals is: 
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The noise in the whole-cycle resolved (L1–L2) 

measurement, scaled to meters, is about 6 times 

larger than the noise in the L1 and L2 measurements 

when scaled to meters. Thus, this ambiguity-resolved 

measurement will generally have noise between 2 

and 4 centimeters, plus any bias which is present 

from the residual differential ionospheric refraction. 

The Third Step 

Because the (L1–Lc) wavelength is not much shorter 

than the (L1–L2) wavelength, it is generally possible 

to skip the second step above and step directly to the 

(L1 – Lc) measurement. This gives: 
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Again, if one were interested in determining the 

seventy-five-centimeter whole-cycle over very long 

separation distances, one could implement the 

equivalent of equation (3) which gives: 

                                  

)(
)( 1

175.0

11
75.0 c

c

cc LL
ff
PfPf

N −−
+

+
=

λ
                   (5)                     

Finally, because the noise in the (L1–L2) 

measurement is small compared to the 75 centimeter 

wavelength of the (L1–Lc) carrier-phase 

measurement, implementing the true third step could 

be done without any averaging of the following 

equation: 
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The noise in the whole-cycle resolved (L1–Lc) 

measurement will be about the same as the noise in 

the whole-cycle resolved (L1–L2) measurement. 

Over long distances it will have a slightly larger bias 



due to the greater differential ionospheric refraction 

error.  

Before going on to the next step we need to 

make a very important point. The aviation user 

because of safety-of-life considerations will probably 

not want to depend on receiving the L2 signal. But 

even at long distances the aviation user could still 

determine his whole-cycle ambiguity by averaging 

equation (5) for a long time interval. Even though a 

considerable ionospheric bias would be present in the 

resolved measurement, if the reference receiver is 

located at the airport where the aviation user intends 

to land, the ionospheric bias in the aviation receiver 

solution would decrease to a negligible value as he 

approached the airport. And the 2 to 4 centimeter one 

sigma accuracy is more than adequate for landing. 

The Fourth Step  

The fourth step is the critical step. With between 2 

and 4 centimeter accuracy, one would expect that the 

results of either the second or third step above could 

be used to step easily to a final narrow-lane 

solution—and such is the case for short distances 

between reference and user receivers. It is this fourth 

step which limits the distances to less than 10 to 20 

kilometers of separation distance. The reason is the 

large sensitivity to the differential ionospheric 

refraction effects. Table 1 shows that the difference 

frequencies have a large negative sensitive to the 

ionospheric refraction, while the primary frequencies 

have a large positive sensitivity. 

—Short Distances 

For short distances one can step to any one of 

the three primary carrier frequencies, or to an average 

of any two, or to an average of all three. Stepping to 

one of the averages reduces the phase noise 

somewhat since the multipath is independent on the 

different frequencies. There is no benefit to picking 

the widest of these primary carrier-phase 

measurements first, because the widest is also the 

measurement most sensitive to the differential 

ionospheric error. For illustrative purposes and 

because it can be performed using currently available 

dual-frequency data, the equation for determining the 

whole-cycle ambiguity of the average of the L1 and 

L2 carrier-phase measurements using the ambiguity-

resolved (L1–L2) carrier-phase measurement is 

given: 
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                                                                                 (7) 

Once the ambiguities are resolved the position 

accuracy obtained is a function of the residual 

ionospheric error and hence a function of the 

separation distance. For the shortest distances the 

receiver carrier-phase multipath error dominates and 

the accuracy for most receivers is between a few 

millimeters and one centimeter one sigma. 

—Long Distances 

At long distances, the 2 to 4 centimeter accuracy of 

either the 75 centimeter or 86 centimeter wide-lane 

carrier-phase measurement is adequate for most 

purposes. The problem is that a residual differential 

ionospheric refraction bias is also present, which 

increases as the separation distance increases. One 

needs to be able to form a refraction-corrected 

ambiguity-resolved carrier-phase measurement in 

order to remove this ionospheric bias. 

With two frequencies, only two carrier-phase 

and two code measurements are available. These two 

measurements can be made independent in the range 

and ionospheric-error space by forming the 

frequency-weighted average and frequency-weighted 

difference of the code measurement and by forming 

the average and difference of the carrier-phase 



measurements. As seen above the frequency-

weighted average of the code measurement has an 

ionospheric refraction error which exactly matches 

that of the carrier-phase difference. This was the 

basis of equation (3). It is also true that the 

frequency-weighted difference of the code 

measurements has an ionospheric error that exactly 

matches that of the average of the carrier-phase 

measurements. In fact, the ionospheric refraction 

error of these two measurements is of the same 

magnitude, but of opposite sign to the first two 

measurements. Thus, if we can find the whole-cycle 

ambiguity in the average of the carrier-phase 

measurements, we can form a refraction free 

measurement by averaging the result with the 

ambiguity resolved carrier-phase difference. The 

equation to resolve the whole-cycle ambiguity for the 

average carrier-phase is: 
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Note that if N0.86 is odd then N0.21 will have half 

integer values. But once N0.21 is known it can be 

multiplied by two to give N0.107 the whole cycle 

ambiguity for the sum frequency. 

The real problem is that the frequency-weighted 

differencing process amplifies the noise in the code 

measurements. And this very noisy code 

measurement is used to attempt to resolve a narrow 

whole-cycle ambiguity. Thus, an accuracy of a few 

centimeters one sigma is needed. It turns out that this 

is practically impossible to accomplish. By the time 

one has averaged equation (8) over very long 

intervals, biases, such as clock divergence between 

the L1 and L2 channels (which affect the sum and 

differences in opposite fashion), will develop and the 

required accuracy in the code measurement cannot be 

achieved. Furthermore, since this is the only 

measurement orthogonal to the carrier-phase 

difference measurement in the range/ionospheric 

refraction error space, it cannot be found for any 

other combination which would allow a refraction-

corrected measurement to be formed. 

One could consider using a geometry dependent 

search process to resolve the refraction-free cycle 

ambiguities. It turns out that once the wide-lane, 86 

centimeter ambiguities are resolved, a 10.7 

centimeter whole-cycle ambiguity remains in the 

refraction-corrected result. That there is no way to 

change this 10.7 whole-cycle ambiguity using only 

the L1 and L2 measurements is shown by giving 

three different equations which can be derived 

directly. 
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                                                                               (10) 
ρλλ =+++− 107.022377.086.021 )()( NLNLL  

                                                                               (11) 
where ρ is the pseudorange and contains no 

ionospheric-refraction error. In these three equations 

the whole-cycle ambiguity value, N0.86, is known. But 

the second whole-cycle ambiguity is unknown and 

needs to be resolved in the search process. In each 

case, it has an effective ambiguity whole-cycle value 

of 10.7 centimeters. But over large separation 

distances (broadcast) orbit errors will clearly be too 

large to obtain positions with the required few 

centimeter accuracy. Tropospheric errors would also 

be difficult to remove to the required accuracy. 

The above analysis was done for the existing 

two-frequency situation. What about the situation 

when three frequencies are available? It turns out that 

because the Lc frequency is so close to the L2 

frequency, no significant benefit is obtained to assist 



in the refraction-correction process. The L1/Lc pair 

of frequencies can be used together in a manner 

completely parallel to the L1/L2 pair. But this pair 

has exactly the same problem as far as obtaining a 

refraction corrected result is concerned. The L2 and 

Lc pair are so close together that the two difference 

frequencies with L1 cannot be used for refraction 

correction because of the large refraction-correction 

multiplier that results. Thus with the specific three 

frequencies chosen, it remains impossible to perform 

a refraction correction process. 

 

A covariance analysis with five states, 

pseudorange, ionosphere delay and three integer 

ambiguities, and six double difference measurements 

(code and carrier phase measurements from three 

frequencies) is carried out to investigate effects of 

differential ionosphere delay on integer cycle 

ambiguity resolution. Geometry free, cascaded whole 

cycle ambiguity resolution is used, with assumptions 

that mu ltipath and receiver noise of carrier phase 

measurements are 1 % of their wavelength. For code 

measurements, 30 centimeter is used as one sigma 

value of multipath and receiver noise. It is also 

assumed that differential ionosphere delay has a 

linear gradient of 3 part per million. Troposphere 

delay is canceled out in geometry free approach. The 

above figure shows results of this analysis. 

 As expected, due to increase in differential 

ionosphere delay, a user can resolve the cycle 

ambiguity of Lc carrier phase measurement only up 

to 2km from the reference station, the L1-L2 cycle 

ambiguity up to 7km from the reference station and 

the L2-Lc cycle ambiguity beyond that with 

99.999999% success rate. For 99.9% success rate, it 

is possible for a user to resolve the Lc cycle 

ambiguity up to 4 km from the reference station, and 

the L1-L2 cycle ambiguity beyond that baseline  

distance. 

The most successful real-time process which 

has been used to extend the range of carrier-phase 

differential navigation has been to use multiple 

reference stations together with ionospheric 

modeling. Estimation of the ionospheric gradient 

using a single reference station also shows promise 

[7]. Some such ionospheric modeling will still be 

required when three frequencies are available. 

CONCLUSIONS 

Substantial benefits will derive from the addition of a 

third frequency to the GPS system. Aviation will be 

one of the prime beneficiaries. For the first time a 

protected second frequency will be available to the 

aviation user and measured ionospheric-refraction 

effects can be made to the code and differential-code 

measurements. Also the presence of redundant 

signals to combat interference and jamming will be 

of significant benefit. 

Carrier-phase differential users will be able to 

resolve the whole-cycle ambiguities much more 

quickly—often in a single epoch when employed 

over short distances. The longer distance user of 

carrier-phase differential measurements will see 

limited gains from the new frequency. However, 

some significant benefit can be exp ected for 

particular applications. This was illustrated by the use 



of the wide-lane (e.g. the 75cm.) resolved 

measurement for landing of aircraft. When the 

reference receiver is at the airport, the ionospheric 

bias error will be insignificant at exactly the time 

when maximum accuracy is desired. 
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